Revision as of 15:16, 23 February 2015 by imported>An Adventurer
In early 2003, Turbine released a timeline called The History of Auberean. We are presented with several events, and the year the occurred on both the Portal Year and Roulean calendars:
With multiple matching pairs of dates, we can determine the equation to convert between calendars. All we have to do is treat the pairs of dates as coordinates of points, and find the equation for the line that intersects those points. We will determine the equation for each set of points:
Point A
|
Point B
|
Equation
|
(-1441, 324) |
(-869, 704) |
RC = (95/143) * PY + (16657/13)
|
(-1441, 324) |
(779, 765) |
RC = (441/662) * PY + (849969/662)
|
(-1441, 324) |
(-758, 779) |
RC = (455/683) * PY + (876947/683)
|
(-1441, 324) |
(-540, 924) |
RC = (600/901) * PY + (1156524/901)
|
(-1441, 324) |
(-358, 1046) |
RC = (2/3) * PY + (3854/3)
|
(-869, 704) |
(779, 765) |
RC = (61/90) * PY + (116369/90)
|
(-869, 704) |
(-758, 779) |
RC = (25/37) * PY + (47773/37)
|
(-869, 704) |
(-540, 924) |
RC = (220/329) * PY + (422796/329)
|
(-869, 704) |
(-358, 1046) |
RC = (342/511) * PY + (656942/511)
|
(-779, 765) |
(-758, 779) |
RC = (2/3) * PY + (3853/3)
|
(-779, 765) |
(-540, 924) |
RC = (159/239) * PY + (306696/239)
|
(-779, 765) |
(-358, 1046) |
RC = (281/421) * PY + (540964/421)
|
(-758, 779) |
(-540, 924) |
RC = (145/218) * PY + (139866/109)
|
(-758, 779) |
(-358, 1046) |
RC = (267/400) * PY + (256993/200)
|
(-540, 924) |
(-358, 1046) |
RC = (61/91) * PY + (117024/91)
|
If we solve the division within the parentheses, we see these equations are all fairly similar. Below is a table with the equations, where the division has been solved to four decimal places:
Equation
|
is similar to:
|
RC = (95/143) * PY + (16657/13) |
RC = (0.6643) * PY + (1281.3077)
|
RC = (441/662) * PY + (849969/662) |
RC = (0.6662) * PY + (1283.9411)
|
RC = (455/683) * PY + (876947/683) |
RC = (0.6662) * PY + (1283.9634)
|
RC = (600/901) * PY + (1156524/901) |
RC = (0.6659) * PY + (1283.6004)
|
RC = (2/3) * PY + (3854/3) |
RC = (0.6667) * PY + (1284.6667)
|
RC = (61/90) * PY + (116369/90) |
RC = (0.6778) * PY + (1292.9889)
|
RC = (25/37) * PY + (47773/37) |
RC = (0.6757) * PY + (1291.1622)
|
RC = (220/329) * PY + (422796/329) |
RC = (0.6687) * PY + (1285.0942)
|
RC = (342/511) * PY + (656942/511) |
RC = (0.6693) * PY + (1285.6008)
|
RC = (2/3) * PY + (3853/3) |
RC = (0.6667) * PY + (1284.3333)
|
RC = (159/239) * PY + (306696/239) |
RC = (0.6653) * PY + (1283.2469)
|
RC = (281/421) * PY + (540964/421) |
RC = (0.6675) * PY + (1284.9501)
|
RC = (145/218) * PY + (139866/109) |
RC = (0.6651) * PY + (1283.1743)
|
RC = (267/400) * PY + (256993/200) |
RC = (0.6675) * PY + (1284.9650)
|
RC = (61/91) * PY + (117024/91) |
RC = (0.6703) * PY + (1285.9780)
|
One thing is very clear, the slope of all of these equations is very close to .67. This means we can express the slope as (2/3). Its only the y-intercept that varies. If we round the y-intercept to the nearest whole number, third, or quarter, we are left the following equations (duplicates removed):
- RC = (2/3) * PY + (1281.3334)
- RC = (2/3) * PY + (1283.25)
- RC = (2/3) * PY + (1283.6667)
- RC = (2/3) * PY + (1284)
- RC = (2/3) * PY + (1284.3334)
- RC = (2/3) * PY + (1284.6667)
- RC = (2/3) * PY + (1285)
- RC = (2/3) * PY + (1285.6667)
- RC = (2/3) * PY + (1286)
- RC = (2/3) * PY + (1291)
- RC = (2/3) * PY + (1293)
To determine which equation works best, we can input the PY dates we have, and see how the RC output compares to expected value. Below is a table for each equation, and all of its inputs and outputs:
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1281.3334) |
324 |
320.6667
|
-869 |
RC = (2/3) * PY + (1281.3334) |
704 |
702
|
-779 |
RC = (2/3) * PY + (1281.3334) |
765 |
762
|
-758 |
RC = (2/3) * PY + (1281.3334) |
779 |
776
|
-540 |
RC = (2/3) * PY + (1281.3334) |
924 |
921.3334
|
-358 |
RC = (2/3) * PY + (1281.3334) |
1046 |
1042.6667
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1283.25) |
324 |
322.5833
|
-869 |
RC = (2/3) * PY + (1283.25) |
704 |
703.9167
|
-779 |
RC = (2/3) * PY + (1283.25) |
765 |
763.9167
|
-758 |
RC = (2/3) * PY + (1283.25) |
779 |
777.9167
|
-540 |
RC = (2/3) * PY + (1283.25) |
924 |
923.25
|
-358 |
RC = (2/3) * PY + (1283.25) |
1046 |
1044.5833
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1283.6667) |
324 |
323
|
-869 |
RC = (2/3) * PY + (1283.6667) |
704 |
704.3334
|
-779 |
RC = (2/3) * PY + (1283.6667) |
765 |
764.3334
|
-758 |
RC = (2/3) * PY + (1283.6667) |
779 |
778.3334
|
-540 |
RC = (2/3) * PY + (1283.6667) |
924 |
923.6667
|
-358 |
RC = (2/3) * PY + (1283.6667) |
1046 |
1045
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1284) |
324 |
323.3334
|
-869 |
RC = (2/3) * PY + (1284) |
704 |
704.6667
|
-779 |
RC = (2/3) * PY + (1284) |
765 |
764.6667
|
-758 |
RC = (2/3) * PY + (1284) |
779 |
778.6667
|
-540 |
RC = (2/3) * PY + (1284) |
924 |
924
|
-358 |
RC = (2/3) * PY + (1284) |
1046 |
1045.3334
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1284.3334) |
324 |
323.6667
|
-869 |
RC = (2/3) * PY + (1284.3334) |
704 |
705
|
-779 |
RC = (2/3) * PY + (1284.3334) |
765 |
765
|
-758 |
RC = (2/3) * PY + (1284.3334) |
779 |
779
|
-540 |
RC = (2/3) * PY + (1284.3334) |
924 |
924.3334
|
-358 |
RC = (2/3) * PY + (1284.3334) |
1046 |
1045.6667
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1284.6667) |
324 |
324
|
-869 |
RC = (2/3) * PY + (1284.6667) |
704 |
705.3334
|
-779 |
RC = (2/3) * PY + (1284.6667) |
765 |
765.3334
|
-758 |
RC = (2/3) * PY + (1284.6667) |
779 |
779.3334
|
-540 |
RC = (2/3) * PY + (1284.6667) |
924 |
924.6667
|
-358 |
RC = (2/3) * PY + (1284.6667) |
1046 |
1046
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1285) |
324 |
324.3334
|
-869 |
RC = (2/3) * PY + (1285) |
704 |
705.6667
|
-779 |
RC = (2/3) * PY + (1285) |
765 |
765.6667
|
-758 |
RC = (2/3) * PY + (1285) |
779 |
779.6667
|
-540 |
RC = (2/3) * PY + (1285) |
924 |
925
|
-358 |
RC = (2/3) * PY + (1285) |
1046 |
1046.3334
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1285.6667) |
324 |
325
|
-869 |
RC = (2/3) * PY + (1285.6667) |
704 |
706.3334
|
-779 |
RC = (2/3) * PY + (1285.6667) |
765 |
766.3334
|
-758 |
RC = (2/3) * PY + (1285.6667) |
779 |
780.3334
|
-540 |
RC = (2/3) * PY + (1285.6667) |
924 |
925.6667
|
-358 |
RC = (2/3) * PY + (1285.6667) |
1046 |
1047
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1286) |
324 |
325.3334
|
-869 |
RC = (2/3) * PY + (1286) |
704 |
706.6667
|
-779 |
RC = (2/3) * PY + (1286) |
765 |
766.6667
|
-758 |
RC = (2/3) * PY + (1286) |
779 |
780.6667
|
-540 |
RC = (2/3) * PY + (1286) |
924 |
926
|
-358 |
RC = (2/3) * PY + (1286) |
1046 |
1047.3334
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1291) |
324 |
330.33334
|
-869 |
RC = (2/3) * PY + (1291) |
704 |
711.6667
|
-779 |
RC = (2/3) * PY + (1291) |
765 |
771.6667
|
-758 |
RC = (2/3) * PY + (1291) |
779 |
785.6667
|
-540 |
RC = (2/3) * PY + (1291) |
924 |
931
|
-358 |
RC = (2/3) * PY + (1291) |
1046 |
1052.3334
|
Input (PY)
|
Equation
|
Expected Output (RC)
|
Actual Output (RC)
|
-1441 |
RC = (2/3) * PY + (1293) |
324 |
332.3334
|
-869 |
RC = (2/3) * PY + (1293) |
704 |
713.6667
|
-779 |
RC = (2/3) * PY + (1293) |
765 |
773.6667
|
-758 |
RC = (2/3) * PY + (1293) |
779 |
787.6667
|
-540 |
RC = (2/3) * PY + (1293) |
924 |
933
|
-358 |
RC = (2/3) * PY + (1293) |
1046 |
1054.3334
|
Conclusion
References
<references />