Continuity/Roulean Calendar and Portal Years: Difference between revisions
imported>An Adventurer (reworking article to be about finding the conversion. timeline of ispar covers previous use) |
imported>An Adventurer (in progress, saving work) |
||
Line 27: | Line 27: | ||
|bgcolor=#d0d0d0| '''Equation''' | |bgcolor=#d0d0d0| '''Equation''' | ||
|- | |- | ||
| (-1441, 324) || (-869, 704) || | | (-1441, 324) || (-869, 704) || RC = (95/143) * PY + (16657/13) | ||
|- | |- | ||
| (-1441, 324) || (779, 765) || | | (-1441, 324) || (779, 765) || RC = (441/662) * PY + (849969/662) | ||
|- | |- | ||
| (-1441, 324) || (-758, 779) || | | (-1441, 324) || (-758, 779) || RC = (455/683) * PY + (876947/683) | ||
|- | |- | ||
| (-1441, 324) || (-540, 924) || | | (-1441, 324) || (-540, 924) || RC = (600/901) * PY + (1156524/901) | ||
|- | |- | ||
| (-1441, 324) || (-358, 1046) || | | (-1441, 324) || (-358, 1046) || RC = (2/3) * PY + (3854/3) | ||
|- | |- | ||
| (-869, 704) || (779, 765) || | | (-869, 704) || (779, 765) || RC = (61/90) * PY + (116369/90) | ||
|- | |- | ||
| (-869, 704) || (-758, 779) || | | (-869, 704) || (-758, 779) || RC = (25/37) * PY + (47773/37) | ||
|- | |- | ||
| (-869, 704) || (-540, 924) || | | (-869, 704) || (-540, 924) || RC = (220/329) * PY + (422796/329) | ||
|- | |- | ||
| (-869, 704) || (-358, 1046) || | | (-869, 704) || (-358, 1046) || RC = (342/511) * PY + (656942/511) | ||
|- | |- | ||
| (-779, 765) || (-758, 779) || | | (-779, 765) || (-758, 779) || RC = (2/3) * PY + (3853/3) | ||
|- | |- | ||
| (-779, 765) || (-540, 924) || | | (-779, 765) || (-540, 924) || RC = (159/239) * PY + (306696/239) | ||
|- | |- | ||
| (-779, 765) || (-358, 1046) || | | (-779, 765) || (-358, 1046) || RC = (281/421) * PY + (540964/421) | ||
|- | |- | ||
| (-758, 779) || (-540, 924) || | | (-758, 779) || (-540, 924) || RC = (145/218) * PY + (139866/109) | ||
|- | |- | ||
| (-758, 779) || (-358, 1046) || | | (-758, 779) || (-358, 1046) || RC = (267/400) * PY + (256993/200) | ||
|- | |- | ||
| (-540, 924) || (-358, 1046) || | | (-540, 924) || (-358, 1046) || RC = (61/91) * PY + (117024/91) | ||
|- | |- | ||
|} | |} | ||
If we solve the division within the parentheses, we see these equations are all fairly similar. Below is a table with the equations, where the division has been solved to four decimal places: | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0| '''Equation''' | |||
|bgcolor=#d0d0d0| '''is similar to:''' | |||
|- | |||
| RC = (95/143) * PY + (16657/13) || RC = (0.6643) * PY + (1281.3077) | |||
|- | |||
| RC = (441/662) * PY + (849969/662) || RC = (0.6662) * PY + (1283.9411) | |||
|- | |||
| RC = (455/683) * PY + (876947/683) || RC = (0.6662) * PY + (1283.9634) | |||
|- | |||
| RC = (600/901) * PY + (1156524/901) || RC = (0.6659) * PY + (1283.6004) | |||
|- | |||
| RC = (2/3) * PY + (3854/3) || RC = (0.6667) * PY + (1284.6667) | |||
|- | |||
| RC = (61/90) * PY + (116369/90) || RC = (0.6778) * PY + (1292.9889) | |||
|- | |||
| RC = (25/37) * PY + (47773/37) || RC = (0.6757) * PY + (1291.1622) | |||
|- | |||
| RC = (220/329) * PY + (422796/329) || RC = (0.6687) * PY + (1285.0942) | |||
|- | |||
| RC = (342/511) * PY + (656942/511) || RC = (0.6693) * PY + (1285.6008) | |||
|- | |||
| RC = (2/3) * PY + (3853/3) || RC = (0.6667) * PY + (1284.3333) | |||
|- | |||
| RC = (159/239) * PY + (306696/239) || RC = (0.6653) * PY + (1283.2469) | |||
|- | |||
| RC = (281/421) * PY + (540964/421) || RC = (0.6675) * PY + (1284.9501) | |||
|- | |||
| RC = (145/218) * PY + (139866/109) || RC = (0.6651) * PY + (1283.1743) | |||
|- | |||
| RC = (267/400) * PY + (256993/200) || RC = (0.6675) * PY + (1284.9650) | |||
|- | |||
| RC = (61/91) * PY + (117024/91) || RC = (0.6703) * PY + (1285.9780) | |||
|- | |||
|} | |||
One thing is very clear, the slope of all of these equations is very close to .67. This means we can express the slope as (2/3). Its only the y-intercept that varies. If we round the y-intercept to the nearest whole number, third, or quarter, we are left the following equations (duplicates removed): | |||
* RC = (2/3) * PY + (1281.3334) | |||
* RC = (2/3) * PY + (1283.25) | |||
* RC = (2/3) * PY + (1283.6667) | |||
* RC = (2/3) * PY + (1284) | |||
* RC = (2/3) * PY + (1284.3334) | |||
* RC = (2/3) * PY + (1284.6667) | |||
* RC = (2/3) * PY + (1285) | |||
* RC = (2/3) * PY + (1285.6667) | |||
* RC = (2/3) * PY + (1286) | |||
* RC = (2/3) * PY + (1291) | |||
* RC = (2/3) * PY + (1293) | |||
To determine which equation works best, we can input the PY dates we have, and see how the RC output compares to expected value. Below is a table for each equation, and all of its inputs and outputs: | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1281.3334) || 324 || <span style="color:red">320.6667</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1281.3334) || 704 || <span style="color:red">702</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1281.3334) || 765 || <span style="color:red">762</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1281.3334) || 779 || <span style="color:red">776</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1281.3334) || 924 || <span style="color:red">921.3334</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1281.3334) || 1046 || <span style="color:red">1042.6667</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1283.25) || 324 || <span style="color:red">322.5833</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1283.25) || 704 || <span style="color:red">703.9167</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1283.25) || 765 || <span style="color:red">763.9167</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1283.25) || 779 || <span style="color:red">777.9167</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1283.25) || 924 || <span style="color:red">923.25</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1283.25) || 1046 || <span style="color:red">1044.5833</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1283.6667) || 324 || <span style="color:red">323</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1283.6667) || 704 || <span style="color:green">704.3334</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1283.6667) || 765 || <span style="color:red">764.3334</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1283.6667) || 779 || <span style="color:red">778.3334</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1283.6667) || 924 || <span style="color:red">923.6667</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1283.6667) || 1046 || <span style="color:red">1045</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1284) || 324 || <span style="color:red">323.3334</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1284) || 704 || <span style="color:green">704.6667</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1284) || 765 || <span style="color:red">764.6667</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1284) || 779 || <span style="color:red">778.6667</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1284) || 924 || <span style="color:green">924</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1284) || 1046 || <span style="color:red">1045.3334</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1284.3334) || 324 || <span style="color:red">323.6667</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1284.3334) || 704 || <span style="color:red">705</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1284.3334) || 765 || <span style="color:green">765</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1284.3334) || 779 || <span style="color:green">779</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1284.3334) || 924 || <span style="color:green">924.3334</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1284.3334) || 1046 || <span style="color:red">1045.6667</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1284.6667) || 324 || <span style="color:green">324</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1284.6667) || 704 || <span style="color:red">705.3334</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1284.6667) || 765 || <span style="color:green">765.3334</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1284.6667) || 779 || <span style="color:green">779.3334</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1284.6667) || 924 || <span style="color:green">924.6667</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1284.6667) || 1046 || <span style="color:green">1046</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1285) || 324 || <span style="color:green">324.3334</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1285) || 704 || <span style="color:red">705.6667</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1285) || 765 || <span style="color:green">765.6667</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1285) || 779 || <span style="color:green">779.6667</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1285) || 924 || <span style="color:red">925</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1285) || 1046 || <span style="color:green">1046.3334</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1285.6667) || 324 || <span style="color:red">325</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1285.6667) || 704 || <span style="color:red">706.3334</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1285.6667) || 765 || <span style="color:red">766.3334</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1285.6667) || 779 || <span style="color:red">780.3334</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1285.6667) || 924 || <span style="color:red">925.6667</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1285.6667) || 1046 || <span style="color:red">1047</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1286) || 324 || <span style="color:red">325.3334</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1286) || 704 || <span style="color:red">706.6667</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1286) || 765 || <span style="color:red">766.6667</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1286) || 779 || <span style="color:red">780.6667</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1286) || 924 || <span style="color:red">926</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1286) || 1046 || <span style="color:red">1047.3334</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1291) || 324 || <span style="color:red">330.33334</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1291) || 704 || <span style="color:red">711.6667</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1291) || 765 || <span style="color:red">771.6667</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1291) || 779 || <span style="color:red">785.6667</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1291) || 924 || <span style="color:red">931</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1291) || 1046 || <span style="color:red">1052.3334</span> | |||
|- | |||
|} | |||
{|class="wikitable" | |||
|bgcolor=#d0d0d0 width=90px| '''Input (PY)''' | |||
|bgcolor=#d0d0d0 width=180px| '''Equation''' | |||
|bgcolor=#d0d0d0 width=140px| '''Expected Output (RC)''' | |||
|bgcolor=#d0d0d0 width=120px| '''Actual Output (RC)''' | |||
|- | |||
| -1441 || RC = (2/3) * PY + (1293) || 324 || <span style="color:red">332.3334</span> | |||
|- | |||
| -869 || RC = (2/3) * PY + (1293) || 704 || <span style="color:red">713.6667</span> | |||
|- | |||
| -779 || RC = (2/3) * PY + (1293) || 765 || <span style="color:red">773.6667</span> | |||
|- | |||
| -758 || RC = (2/3) * PY + (1293) || 779 || <span style="color:red">787.6667</span> | |||
|- | |||
| -540 || RC = (2/3) * PY + (1293) || 924 || <span style="color:red">933</span> | |||
|- | |||
| -358 || RC = (2/3) * PY + (1293) || 1046 || <span style="color:red">1054.3334</span> | |||
|- | |||
|} | |||
== Conclusion == | == Conclusion == | ||
== References == | == References == | ||
<references /> | <references /> |
Revision as of 15:16, 23 February 2015
In early 2003, Turbine released a timeline called The History of Auberean. We are presented with several events, and the year the occurred on both the Portal Year and Roulean calendars:
Portal Year | Roulean Year | Event |
-1441 PY | 324 RC | Jojiism founded.<ref name=HistoryOfAubereanVol3>2003/03 The History of Auberean/Volume III: The Fall From Grace (-1,804 to -891)</ref> |
-869 PY | 704 RC | Viamont invades Aluvia. The reign of Pwyll II ends and the reign of Alfric begins.<ref name=HistoryOfAubereanVol4>2003/03 The History of Auberean/Volume IV: Shifting Ways (-888 to -574)</ref> |
-779 PY | 765 RC | Reign of Alfrega begins. Harlune stays behind on Ispar during an expedition.<ref name=HistoryOfAubereanVol4 /> |
-758 PY | 779 RC | Reign of Osric begins.<ref name=HistoryOfAubereanVol4 /> |
-540 PY | 924 RC | Gharu'n armies seige the Roulean capital of Tirethas.<ref name=HistoryOfAubereanVol5>2003/03 The History of Auberean/Volume V: New Arrivals (-540 to 13)</ref> |
-358 PY | 1046 RC | Emperor Kou unites the Sho under his rule.<ref name=HistoryOfAubereanVol5 /> |
With multiple matching pairs of dates, we can determine the equation to convert between calendars. All we have to do is treat the pairs of dates as coordinates of points, and find the equation for the line that intersects those points. We will determine the equation for each set of points:
Point A | Point B | Equation |
(-1441, 324) | (-869, 704) | RC = (95/143) * PY + (16657/13) |
(-1441, 324) | (779, 765) | RC = (441/662) * PY + (849969/662) |
(-1441, 324) | (-758, 779) | RC = (455/683) * PY + (876947/683) |
(-1441, 324) | (-540, 924) | RC = (600/901) * PY + (1156524/901) |
(-1441, 324) | (-358, 1046) | RC = (2/3) * PY + (3854/3) |
(-869, 704) | (779, 765) | RC = (61/90) * PY + (116369/90) |
(-869, 704) | (-758, 779) | RC = (25/37) * PY + (47773/37) |
(-869, 704) | (-540, 924) | RC = (220/329) * PY + (422796/329) |
(-869, 704) | (-358, 1046) | RC = (342/511) * PY + (656942/511) |
(-779, 765) | (-758, 779) | RC = (2/3) * PY + (3853/3) |
(-779, 765) | (-540, 924) | RC = (159/239) * PY + (306696/239) |
(-779, 765) | (-358, 1046) | RC = (281/421) * PY + (540964/421) |
(-758, 779) | (-540, 924) | RC = (145/218) * PY + (139866/109) |
(-758, 779) | (-358, 1046) | RC = (267/400) * PY + (256993/200) |
(-540, 924) | (-358, 1046) | RC = (61/91) * PY + (117024/91) |
If we solve the division within the parentheses, we see these equations are all fairly similar. Below is a table with the equations, where the division has been solved to four decimal places:
Equation | is similar to: |
RC = (95/143) * PY + (16657/13) | RC = (0.6643) * PY + (1281.3077) |
RC = (441/662) * PY + (849969/662) | RC = (0.6662) * PY + (1283.9411) |
RC = (455/683) * PY + (876947/683) | RC = (0.6662) * PY + (1283.9634) |
RC = (600/901) * PY + (1156524/901) | RC = (0.6659) * PY + (1283.6004) |
RC = (2/3) * PY + (3854/3) | RC = (0.6667) * PY + (1284.6667) |
RC = (61/90) * PY + (116369/90) | RC = (0.6778) * PY + (1292.9889) |
RC = (25/37) * PY + (47773/37) | RC = (0.6757) * PY + (1291.1622) |
RC = (220/329) * PY + (422796/329) | RC = (0.6687) * PY + (1285.0942) |
RC = (342/511) * PY + (656942/511) | RC = (0.6693) * PY + (1285.6008) |
RC = (2/3) * PY + (3853/3) | RC = (0.6667) * PY + (1284.3333) |
RC = (159/239) * PY + (306696/239) | RC = (0.6653) * PY + (1283.2469) |
RC = (281/421) * PY + (540964/421) | RC = (0.6675) * PY + (1284.9501) |
RC = (145/218) * PY + (139866/109) | RC = (0.6651) * PY + (1283.1743) |
RC = (267/400) * PY + (256993/200) | RC = (0.6675) * PY + (1284.9650) |
RC = (61/91) * PY + (117024/91) | RC = (0.6703) * PY + (1285.9780) |
One thing is very clear, the slope of all of these equations is very close to .67. This means we can express the slope as (2/3). Its only the y-intercept that varies. If we round the y-intercept to the nearest whole number, third, or quarter, we are left the following equations (duplicates removed):
- RC = (2/3) * PY + (1281.3334)
- RC = (2/3) * PY + (1283.25)
- RC = (2/3) * PY + (1283.6667)
- RC = (2/3) * PY + (1284)
- RC = (2/3) * PY + (1284.3334)
- RC = (2/3) * PY + (1284.6667)
- RC = (2/3) * PY + (1285)
- RC = (2/3) * PY + (1285.6667)
- RC = (2/3) * PY + (1286)
- RC = (2/3) * PY + (1291)
- RC = (2/3) * PY + (1293)
To determine which equation works best, we can input the PY dates we have, and see how the RC output compares to expected value. Below is a table for each equation, and all of its inputs and outputs:
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1281.3334) | 324 | 320.6667 |
-869 | RC = (2/3) * PY + (1281.3334) | 704 | 702 |
-779 | RC = (2/3) * PY + (1281.3334) | 765 | 762 |
-758 | RC = (2/3) * PY + (1281.3334) | 779 | 776 |
-540 | RC = (2/3) * PY + (1281.3334) | 924 | 921.3334 |
-358 | RC = (2/3) * PY + (1281.3334) | 1046 | 1042.6667 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1283.25) | 324 | 322.5833 |
-869 | RC = (2/3) * PY + (1283.25) | 704 | 703.9167 |
-779 | RC = (2/3) * PY + (1283.25) | 765 | 763.9167 |
-758 | RC = (2/3) * PY + (1283.25) | 779 | 777.9167 |
-540 | RC = (2/3) * PY + (1283.25) | 924 | 923.25 |
-358 | RC = (2/3) * PY + (1283.25) | 1046 | 1044.5833 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1283.6667) | 324 | 323 |
-869 | RC = (2/3) * PY + (1283.6667) | 704 | 704.3334 |
-779 | RC = (2/3) * PY + (1283.6667) | 765 | 764.3334 |
-758 | RC = (2/3) * PY + (1283.6667) | 779 | 778.3334 |
-540 | RC = (2/3) * PY + (1283.6667) | 924 | 923.6667 |
-358 | RC = (2/3) * PY + (1283.6667) | 1046 | 1045 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1284) | 324 | 323.3334 |
-869 | RC = (2/3) * PY + (1284) | 704 | 704.6667 |
-779 | RC = (2/3) * PY + (1284) | 765 | 764.6667 |
-758 | RC = (2/3) * PY + (1284) | 779 | 778.6667 |
-540 | RC = (2/3) * PY + (1284) | 924 | 924 |
-358 | RC = (2/3) * PY + (1284) | 1046 | 1045.3334 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1284.3334) | 324 | 323.6667 |
-869 | RC = (2/3) * PY + (1284.3334) | 704 | 705 |
-779 | RC = (2/3) * PY + (1284.3334) | 765 | 765 |
-758 | RC = (2/3) * PY + (1284.3334) | 779 | 779 |
-540 | RC = (2/3) * PY + (1284.3334) | 924 | 924.3334 |
-358 | RC = (2/3) * PY + (1284.3334) | 1046 | 1045.6667 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1284.6667) | 324 | 324 |
-869 | RC = (2/3) * PY + (1284.6667) | 704 | 705.3334 |
-779 | RC = (2/3) * PY + (1284.6667) | 765 | 765.3334 |
-758 | RC = (2/3) * PY + (1284.6667) | 779 | 779.3334 |
-540 | RC = (2/3) * PY + (1284.6667) | 924 | 924.6667 |
-358 | RC = (2/3) * PY + (1284.6667) | 1046 | 1046 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1285) | 324 | 324.3334 |
-869 | RC = (2/3) * PY + (1285) | 704 | 705.6667 |
-779 | RC = (2/3) * PY + (1285) | 765 | 765.6667 |
-758 | RC = (2/3) * PY + (1285) | 779 | 779.6667 |
-540 | RC = (2/3) * PY + (1285) | 924 | 925 |
-358 | RC = (2/3) * PY + (1285) | 1046 | 1046.3334 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1285.6667) | 324 | 325 |
-869 | RC = (2/3) * PY + (1285.6667) | 704 | 706.3334 |
-779 | RC = (2/3) * PY + (1285.6667) | 765 | 766.3334 |
-758 | RC = (2/3) * PY + (1285.6667) | 779 | 780.3334 |
-540 | RC = (2/3) * PY + (1285.6667) | 924 | 925.6667 |
-358 | RC = (2/3) * PY + (1285.6667) | 1046 | 1047 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1286) | 324 | 325.3334 |
-869 | RC = (2/3) * PY + (1286) | 704 | 706.6667 |
-779 | RC = (2/3) * PY + (1286) | 765 | 766.6667 |
-758 | RC = (2/3) * PY + (1286) | 779 | 780.6667 |
-540 | RC = (2/3) * PY + (1286) | 924 | 926 |
-358 | RC = (2/3) * PY + (1286) | 1046 | 1047.3334 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1291) | 324 | 330.33334 |
-869 | RC = (2/3) * PY + (1291) | 704 | 711.6667 |
-779 | RC = (2/3) * PY + (1291) | 765 | 771.6667 |
-758 | RC = (2/3) * PY + (1291) | 779 | 785.6667 |
-540 | RC = (2/3) * PY + (1291) | 924 | 931 |
-358 | RC = (2/3) * PY + (1291) | 1046 | 1052.3334 |
Input (PY) | Equation | Expected Output (RC) | Actual Output (RC) |
-1441 | RC = (2/3) * PY + (1293) | 324 | 332.3334 |
-869 | RC = (2/3) * PY + (1293) | 704 | 713.6667 |
-779 | RC = (2/3) * PY + (1293) | 765 | 773.6667 |
-758 | RC = (2/3) * PY + (1293) | 779 | 787.6667 |
-540 | RC = (2/3) * PY + (1293) | 924 | 933 |
-358 | RC = (2/3) * PY + (1293) | 1046 | 1054.3334 |
Conclusion
References
<references />